The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions

نویسنده

  • Nastaran Hashemi
چکیده

We study the nonlinear dynamics of a tapping mode atomic force microscope with tip-surface interactions that include attractive, repulsive, and capillary force contributions using numerical techniques tailored for hybrid or discontinuous dynamical systems that include forward-time simulation with event handling and numerical pseudo-arclength continuation. We find four branches of periodic solutions that are separated by windows of complex and irregular dynamics. The branches of periodic solutions end where the cantilever comes into grazing contact with event surfaces in state space, corresponding to the onset of capillary interactions and the onset of repulsive forces associated with contact. These windows of irregular dynamics are found to coexist with the periodic branches of solutions as well as exist beyond the termination of the periodic solution. Finally, we show that these details can be overlooked unless one is careful to sample the dynamics appropriately. © 2008 American Institute of Physics. #DOI: 10.1063/1.2913054$

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the basins of attraction of tapping mode atomic force microscopy with capillary force interactions

We numerically explore the nonlinear dynamics of the oscillating cantilever tip in tapping mode atomic force microscopy. The cantilever dynamics are determined by complex force interactions between the sample surface and the oscillating cantilever tip which are dominated by attractive, adhesive, and repulsive contributions depending on the instantaneous position of the cantilever. We use a mode...

متن کامل

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers

The nonlinear dynamics of an atomic force microcantilever (AFM) with an attached multi-walled carbon nanotube (MWCNT) tip is investigated experimentally and theoretically. We present the experimental nonlinear frequency response of a MWCNT tipped microcantilever in the tapping mode. Several unusual features in the response distinguish it from those traditionally observed for conventional tips. ...

متن کامل

Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.

Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever...

متن کامل

Mechanical nonlinear generation with coupled torsional harmonic cantilevers for sensitive and quantitative atomic force microscopy of material characteristics

Tapping-mode has been the most widely used mode of operation in atomic force microscopy. Recent studies have shown that higher harmonics of the cantilever vibrations carries information about material properties such as stiffness, viscoelasticity or capillary forces. A major problem with higher harmonic imaging is the low signal to noise ratio. Here we present a micromachined cantilever that en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008